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Abstract. The Fermion interpretation of the white noise framework is considered. As an 
application, It8's product formula of Applebaum, Hudson and Parthasarathy is extended 
to the generalized case. 

1. Introduction 

The non-commutative (quantum) probability theory has been considerably developed 
in recent years [l, 21. In developing their quantum stochastic calculus Hudson and 
Parthasarathy [3] obtained a quantum (i.e. non-"mutative) version of ItB's product 
formula which was based only on the commutative rules of a free Boson field and 
Lebesgue integration. The three fundamental integrators are annihilation, creation 
and number processes which play the role of 'quantum noises' in quantum stochastic 
evolutions. They are non-commutative extensions of classical Brownian motion and 
Poisson processes. 

On the other hand, the white noise approach initiated by Hida [4] has been proved 
highly effective to the classical stochastic integration theory [SI. One natural question 
is: What can one do with it in quantum stochastic calculus? 

In fact, some works which connect the quantum probability theory with white 
noise calculus have appeared. In [6] a quantum white noise calculus leading to an ItB's 
product formula for more general quantum stochastic measured as a consequence of 
the Boson commutative relations was developed. 

In the present paper, we shall try to give a Fermion interpretation for white noise 
calculus and extend It& product formula of Applebaum, Hudson and Parthasarathy 
[7] to the more general case. 

We briefly recall some notions and notation in white noise calculus [S, 81. 
Let Y(R)  be the Schwartz's space of rapidly decreasing functions on R and Yp*(R) 

its dual space. A denotes the self-adjoint extension of the following operator on 
H= LZ(R): 
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This is called the harmonic oscillator operator (see [S, 91 for its physical meaning and 
further properties). Following Simon [9], we can construct a kind of Sobolev space 
over R by using operator A. Put 

Y L Liao and R Liu 

Then e.(x)eY(R) and we haveAe,=Z(n+l)e,, {en, n>O}is an ONE of LZ(R). 

YJR) =:CfeY*(R): lI~l~,p=lI-4pfll~ 
m =E ~ , e ~ ' [ ~ ( n + W < a )  pao. 

"-0 

Then Yp(R) is a Hilbert space and we have 

Yq(R) cYp(R) forp<q 

and 

Y(R)= n Ypp,(R) Y*(R)= U YP,(R). 
P E R +  PER+ 

Moreover, Y-,(R) is the dual of Yp(R). The dual pairing (,) between Yp(R) and 
YmP(R) is given by 

m 

(q, q) = {q, en)(q7 en). 
"=O 

In other words, for p a 0  YJR)  is the LZ(R)-domain of AP and 

1lfik.p = IIApAlz 
where 11-112 is the norm of L'(R). ForpsO, we can also define the norm Il.llz,,. 

For n a 2 ,  we put Yp(R")=:Cf~Y*(R"): Ilfllz,p<m} where 
n 

here r(A) denotes the second quantization operator of A. r(A) is defined on the 
dense subset, spanned by . .@f., fi fLZ(R)}, of the symmetric Fock space of H 
as follows: 

I'(A)Cfl@*. .@h)=:Af,@. * .@Afn 

(see [5,7 for second quantization operator r(A) further properties and physical 
meanings). 

We denote simply by (L') the space LZ(Y*(R), B(Y*(R)), p). Thus for each 
q E (Lz) there exists uniquely a sequence U@)) of functions withf") in LZ(R") such that 
q admits the It8-Wiener decomposition 
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where In@)) is the multiple Wiener integral off") defined by 

rn(f'")=n! J f")(sl, . . . ,$") dB,i dB,. . . dB,. 
I,< ... <an 

Here the symbol A means symmetrization. We have 
DD 

llq11= n! llPIl% 
"=O 

In the sequel we write p-v)} to specify the sequence ff'"). 
Now we can construct Sobolev space over the white noise space. Let p a 0  set 

(YIP =b E (L2): q-- (P), c n! llf")ll;,p< m }. 

llqll:.p=c n!llf")ll:,p. 

"=O 

Then (9)p is a Hilbert space with the norm 1 1 . 1 1 2 , p  given by 
OD 

n=o 

For each p 20, we denote by (9).-, the dual space of (Y),. Here weidentify (L') with 
its dual. Each element of ( Y ) ,  corresponds uniquely to a sequence ct<"') with 
f " ) ~ y - , ( R )  satisfying 

OD 

For p > 0 we have 

WP = (LZ) = (9)? 
{(Y),, p ER} are called the Sobolev spaces over the white noise space. Put 

PER+ P E R +  

We call the element of (9) (resp. (9)*) Hida test functional (resp. distribution). 
The S-transform of functional FE (Y)* is defined by 

(sF)(E) =(((F, : e('.<):)) E €  9(R) 
where :e"s5)=:exp{(-, E ) -  11211E113. 

The Hida's differential operator a, (PER) is defined as 

where 6/6E(r) stands for the Frichet functional derivative [SI. This operator could also 
be interpreted as a Gateaux derivative in the direction of a,, the Dirac delta function 
at t .  More specifically, let q E (Y) and x ,  y E Y*(R), the Gateaux derivative of 9, at x in 
the direction y is defined as 

d 
D , d 4  =z d x  + SY ) L o .  
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It is known that (6[51) for any y E Y*(R), D~ is a continuous linear operator on (9) 
and if y e 9 ( R ) ,  it can be extended to a continuous Linear operator on (9)*. 
Accordingly, for any y E 9*(R),  the dual operator D ;  is a continuous linear operator 
on (S’y and if y eY(R),  its restriction is a continuous linear operator on (9). For the 
special choice y=& we have 

at=D, 
(see [5] for further details about white noise calculus). 

In [6] a quantum white noise calculus leading to It8s product formula for more 
general quantum stochastic measure as a consequence of the Boson commutative 
relations was developed which, in its simplest form, uses as annihilation, creation and 
number processes integrator, the Boson field operators 

r .  

A@)= wo,,(t)=rJ ’ a, ds -. 
A*(t) = W,,,(f) =: 1:. 

I’. ~ ( t ) =  w,,,(t)=: a:.a,ds 

where a: denote the dual of a,. 
Also note that 

Q(f) =:A*(t) + A(f )  t e R  

is defined as a Boson quantum Brownian motion. It is reasonable to call the 
generalized quantum process 

x(t)=:a:+a, t e R  

a Boson Gaussian white noise. It is also remarkable that process 

Na(t) =:N( t )+dQ( t )+At  
is a Quantum Poisson process with parameter A, so a quantum process 

na(t)=:a:-a,+dx(tt)+21 

could be reasonably interpreted as a quantum Poisson white noise. It63 product 
formula can be summarized by the multiplication rules for stochastic differential. 

dA (t)  . dA*(t) = dt 
dA(t)*dN(f) =dA(t) 

dN(t). dA*(t) = dA*(t) 

dN(t) - dN(f) = dN(t) 

which contain the classical ItB’s formula as a special case. Other mutual quadratic 
variations all vanish. 

In this paper we develop the Fermion analogy of this Boson theory under the 
framework of white noise calculus in which the stochastic integrators are now Fermion 
fields operators. The Fermion annihilation and creation processes can be realized on 
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the white noise spaces by means of an isomorphism between the Boson and Fermion 
Fock spaces. 

We use the following notational convention. The symbol A is usually used to 
denote the corresponding Fermion case. We denote by U. the group {l, 2, . . . , n} and 
by u(n) the sign of an element x E a.. 

2. Fermion white noise calculus 

Let H = L Z ( R )  
w 

%(H) =: @ F J H )  
" = O  

is the Fock spaces over H. S , (H)  = C the complex number field 
01 

S ( H ) =  @ S,(H) 
"=O 

denotes its symmetric, 
w 

A ( H ) = : @  A , ( H )  
"=O 

denotes the antisymmetric Fock spaces over H (see [2,5] for further details about 
Fock space). The essential ideas are as follows: One uses a simple isomorphism 

w 

A=: @ An: S ( H ) + A ( H )  
n-0 

between the antisymmetric and symmetric Fock spaces over H. By means of the 
following chaos isomorphism 

U,: S(H)+(L2)  
one obtains immediately an isomorphism 

UA=Us*de- ' :A(H)+(LZ)  

which can be generalized to a Hi& distribution. The consequences are that an 
anticommutative field which is usually given on an antisymmetric Fock space can be 
transported to (YP)", the Hida distribution space. 

Proposition 2.2. Let A ( H )  denote the antisymmetric Fock space on H .  Then there 
exists an isomorphism 
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where 8: R+ R is given by 
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K O  [: t>O. 
O(t) = 

It is obvious that 

where nx = (x,(,) . . . , x,,)) and m u m e  

4t-1,. . .A-")= 2 sPnWA.(nA-) 
XGO(") 

then I E . ( X ~ ,  . . . , x,)] = 1 and is almost everywhere a totally antisymmetric function. 
Let F.ES.(H), then SB,: S,(H)+A,(H) defined as 

~ F , ( x I , .  . . , ~ n ) = ~ n ( x i r . ,  ,xn)-Fn(xi,. . . ,xJ 

forms an isomorphism unitary mapping from S,(H) to A.(H). 
Let 

DI 

SI=: 8 sa. 
"=l 

then one obtains immediately an isomorphism unitary mapping 
Se. S ( H ) + A ( H )  

Q.E.D. 

Remark. A similar Boson-Fermion correspondence was established in [lo]. The 
readers are also recommended to consult [I] for more details. 

Now we can wnstmct the so-called Fermion interpretation. Usingproposition 2.1, 
for any cp-p)}, we define 

G=dcp-{Sa,f")}=j@)} 

and denote 

(SIp={& v+")}, c n!llP)llip-} P O ,  IIGS,,=:C n!IIP)IIiP 
DI m 

"=Q "=a 

where [ I f @ ) l l f . p  = [[r(A)pP)llz defined on the dense subset, spanned by U@): 
j'(n)=fiAfiA.. . Af,, fie LYR)}, of antisymmetric Fock space on H=L2(R) as 
follows: For 

f@)=fiA. . . A fa T(A)y"=:A4fiA. . . AAqf,. 

For eachp >O, we denote by (S.., the dual of (S)p. Here we identify (L') with its dual 
space. Let d* denote the dual operator of d, each element of (S)-p corresponds 
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uniquely to a sequence @‘“)}={d~f”)} withf”)ES!!JR“) satisfying 

”=O 
For p > 0, we have 

p s R +  P € R i  

We call the element of (S) (resp. (S)*) the Fermion-Hida test functional (resp, 
distribution). We denote by (S)+ and (S)-, respectively, the closed spans of the 
vectors {(: x’”:,f,A. . . Af,), fi, . . . , ~ , E Y ( R ) }  with n even or odd, respectively, so 
that thereby (S) is a &graded rigged Hilbert nuclear space. (S)* denote their duals. 
Correspondingly, the operator algebra 

B((S),  (S)*) ={E T: (S)+(S)* iscontinuous] 

i s  Z2-graded by the rule that is even if T Q ,  c (S) $ and odd if T(S), c (5‘) :. 

3. Fermion It6 product formula 

In this section, we shall explicitly realize the Fermion annihilation, creation and the 
number processes on Hida’s white noise functional spaces. As a result, we immedia- 
tely obtain the corresponding Fermion I t ss  product formula by means of the results 
of [6]. 
Definiton 3.1. A generalized quantum (even or odd) process (GQP) is a pair of 
densely defined, mutually adjoint families of linear operators (X(t) ,  X(t)*; t~ R. ) 
from (S) into (S)* such that for any f E R, X(t) (even or odd) with adequate domain 
contain CO={(: x’“ :,fiAhr\. . . Af,),fi, . . . ,f. E $’(I?).}. 

Obviously, if we define, for any v - E (Y) 
d(0W --@p-,d@fft?+-)J 

here assume f i : = ( - m ,  t )x  ... X ( - m , t ) ,  R:=[ t ,  + m ) x  ... xI t ,  + m )  and 
flj-,,) (rap. fK)-)) denote the restriction off‘”) (resp. f(”)) to @ (resp. R:). If d*(t) 
denote the dual of d(t), {d(t), d(t)*, t~ R .} is an even generalized quantum process. 

Also, as an important example of GQP, we investigate the Fermion-Hida 
derivative. 

Theorem 3.2. Let 3, denote the Hida derivative; we define the Fermion-Hida 
derivative as follows: 

D,=a,.d(t) 
D ;= d*(t). a: tER. 

{Q, DJ=IDZ W } = O  
{Q, D3 = &(t) -1 

Then Dt, DFsatisfy following anticommutative relations: 

where {A, B}=AB+BA,  &(t) is equal to 1 or 0 whenever t = s  or t # s ,  respectively. 
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Proof. Let 
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- m * = 2 (: x @ n  : ,f'"') E (Y),P) E Y(R") 
"=SI 

then we have the following GSteau differention 
D,(:x"":,f(")) 

d 
dt =- (: (x+ fy)@:,f'"))l,=, 

Hence we obtain 

Here f denotes the jth variable location of 3@). 
Thus we have, without loss of generality supposing s S t  

m 

D , D , ~ ( x )  = (: x@("-') :, [n(n - l)ft"-]m,s~(s, t ,  . .)I 
"=SI 

&n(n-1)f&?+-)(s, 4 . .)I)= -QD&) 
The conclusion that can be obtained is to note that linear spans of all t/~ are dense 

in (Y), that is, we have 

{D,, RI = 0 on (5'). 
The other conclusion can be easily obtained similarly. 

Q.E.D. 
Generally speaking, we can define GQP by any Wick polynomials of QWN. But due 

to the anticommutation of the Fermion-Hida derivative, the most interesting GQPS 
are representable by polynomials of, at most, second degree. Next we can construct 
some important Fermion quantum processes which play the role of 'quantum noise' in 
quantum stochastic evolution. 

The Fermion annihilation and crealion processes 

AF(t) =: 1 D,& -- 
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Note that 

QAt) =:A T ( 0  +AA9 t E R  

can be regarded as a generalized quantum Fermion Browian motion. It is reasonable 
to call the GQP 

X,(f) =:Of+ D, t c R  

quantum Fermion Gaussian white noise 

The number process 

NF(f )  =: D :*Or ds. L 
It is remarkable that the process 

~ ~ N $ ( t ) = : N , ( t ) + ~ Q , ( t ) + n t  

is a quantum Poisson process with parameter A. So the QGP 

N$(f)  =:OF Dt+ V%XF(t) +U 

could reasonably be interpreted as a quantum Fermion Poisson white noise. 

Remark. A similar 'Fermion Poisson process' was considered in [ll]. 
Some kinds of quantum stochastic differential equation with quantum Fermion 

Gaussian white noise under the framework of white noise calculus will be considered 
in separate papers. 

Differentiation of these processes yields an operator-valued measure. If we denote 
at and a T the canonical annihilation and creation integrator white noise processes in 
Fermion white noise functional space (S) and (S)*, we have, summarizing section 2 
and 3. 

Theorem 3.2. (a) There exists a unique unitary mapping 98 (resp. a*) from (9) into 
itself (resp. (Y)* into itself) such that 

a 4,. %-I= D* 
(a*)-'. 6Fa* = D* f. 

(b) According to the It6 product formula obtained in [6] and the facts 
d(t).d(f)*=I,d(t).d(s)=d(s).d(t). t ,  S E  R, we have ItB's product formula: 

dAF(f) .dA :(t) = dt 

dA&) .dNF(f) = dAF(t) 

dN,(f)*dAJ(t) =dA,(t) 

dN,(t)-dN,(t) =dNF(f). 

Other mutual quadratic variations all vanish. 
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